Abdicating power for control: a precision timing strategy to modulate function of flight power muscles.

نویسندگان

  • S Sponberg
  • T L Daniel
چکیده

Muscles driving rhythmic locomotion typically show strong dependence of power on the timing or phase of activation. This is particularly true in insects' main flight muscles, canonical examples of muscles thought to have a dedicated power function. However, in the moth (Manduca sexta), these muscles normally activate at a phase where the instantaneous slope of the power-phase curve is steep and well below maximum power. We provide four lines of evidence demonstrating that, contrary to the current paradigm, the moth's nervous system establishes significant control authority in these muscles through precise timing modulation: (i) left-right pairs of flight muscles normally fire precisely, within 0.5-0.6 ms of each other; (ii) during a yawing optomotor response, left-right muscle timing differences shift throughout a wider 8 ms timing window, enabling at least a 50 per cent left-right power differential; (iii) timing differences correlate with turning torque; and (iv) the downstroke power muscles alone causally account for 47 per cent of turning torque. To establish (iv), we altered muscle activation during intact behaviour by stimulating individual muscle potentials to impose left-right timing differences. Because many organisms also have muscles operating with high power-phase gains (Δ(power)/Δ(phase)), this motor control strategy may be ubiquitous in locomotor systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modeling, Simulation and Control of Matrix Convert for Variable Speed Wind Turbine System

This paper presents modeling, simulation and control of matrix converter (MC) for variable speed wind turbine (VSWT) system including permanent magnet synchronous generator (PMSG). At a given wind velocity, the power available from a wind turbine is a function of its shaft speed. In order to track maximum power, the MC adjusts the PMSG shaft speed.The proposed control system allowing independen...

متن کامل

Active and reactive power control via currents of a rotor’s d and q components with nonlinear predictive control strategy in a doubly fed induction generator based on wind power system

Wind energy today, has attracted widespread interest from among a variety of sources of renewable energy in the world. Owing to the increasing demand for production of electrical energy for electricity networks by using wind power, it is essential that wind power plants are actively incorporated in the network’s performance using an appropriate control system. In general, these wind power plant...

متن کامل

A Robust Control Strategy for Distributed Generations in Islanded Microgrids

This paper presents a robust control scheme for distributed generations (DGs) in islanded mode operation of a microgrid (MG). In this strategy, assuming a dynamic slack bus with constant voltage magnitude and phase angle, nonlinear equations of the MG are solved in the slack-voltage-oriented synchronous reference frame, and the instantaneous active and reactive power reference for the slack bus...

متن کامل

Active and reactive power control via currents of a rotor’s d and q components with nonlinear predictive control strategy in a doubly fed induction generator based on wind power system

Wind energy today, has attracted widespread interest from among a variety of sources of renewable energy in the world. Owing to the increasing demand for production of electrical energy for electricity networks by using wind power, it is essential that wind power plants are actively incorporated in the network’s performance using an appropriate control system. In general, these wind power p...

متن کامل

Muscle function in avian flight: achieving power and control.

Flapping flight places strenuous requirements on the physiological performance of an animal. Bird flight muscles, particularly at smaller body sizes, generally contract at high frequencies and do substantial work in order to produce the aerodynamic power needed to support the animal's weight in the air and to overcome drag. This is in contrast to terrestrial locomotion, which offers mechanisms ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings. Biological sciences

دوره 279 1744  شماره 

صفحات  -

تاریخ انتشار 2012